Computer Science AP

Inheritance Section

Questions for Video - Introduction to Inheritance

What does inheritance allow a programmer to do?

Build off of another class to modify or extend it’s functionality.
How does the keyword 'extends' , as in public class Student extends Person state about a class?

It tells you which class your class is extending (building off of). You can only extend one class.
Name one example in the video that demonstrates how inheritance can save the programmer a lot of time and effort.

When adding on to a class you only have to code the ‘extra’ method you are adding, or change the method you are changing – no rewriting the entire class code.
In the InheritanceExamples project, look at the Bugs package.
How would you determine which class or classes are making use of inheritance? Which class or classes are using inheriance in this package?

You look at the classes!
In the InheritanceExamples project, look at the LCDScreen package.
Which classes build off of which classes?

ColorScreenPlus extends ColorScreen and ColorScreen extends Screen
How does inheritance allow you to avoid copy and pasting code that you have already written?

Because it is inherited you don’t have to write it out again. It’s just inherited!
Questions for Videos - Inheritance Fields and Inheritance Methods

Describe the role that access modifiers like public, private, and protected play in inheritance.

public means that in a runner program you can access the members.
private means that only instances of the class can access the variable.
protected means that only instances of the class and subclasses of the class can access.
In the InheritanceExamples project, look at the StudentTeacher01 package.
Assume you are coding inside the StudentTeacher01 package.

Explain why or why not the following would be allowed:
NO
A private variable in the Person class can be used in the Student class.
YES
A protected variable in the Person class can be used in the Student class.

YES
A protected variable in the Person class can be used in the ExchangeStudent class.

YES
A public variable in the Person class can be used in the Student class.

YES
A public variable in the Person class can be used in the ExchangeStudent class.

NO
A private variable in the Student class can be used in the Person class.
A student created the following class and it compiles without any errors
public class Dog extends Animal {
 public Dog() { //code not shown }
 public void showInfo() {
 System.out.println(city + “: “ + tagId);

 }

}
How might you explain the code compiling without error when the Dog class does not appear to have a variable named tagId ?

The tagId variable could be inherited from the Animal class.

What level of access could/would the tagId variable have in order for this to compile?

public or protected
By the definition in the Java docs, a variable declared with an access level of _____________ is not inherited by subclasses.

private
In the InheritanceExamples project, take a look at the Shapes package.
Which variable/variables from the Shape class can the Circle class not directly access?

x and y
The Circle class is able to modify the value of the x and y position because the Shape class has ____________ .

mutator method/s
The programmer of the Shape class decides to go back and make the sides variable have protected access. No other code in the project is changed. Does this cause problems with the Circle and Parallelogram class? Explain why or why not.

No. Protected can be accessed from subclasses.
The programmer of the Shape class decides to go back and make the sides variable have private access. No other code in the project is changed. Does this cause problems with the Circle and Parallelogram class? Explain why or why not.
Problems. The subclasses use the variable, and now they can’t.
A runner class from a completely different project uses the following code:
public class RunnerFromADifferentMother {
 public static void main(String[] args) {

 Circle C = new Circle(10);

 C.shrink();

 ColoredCircle CC = new ColoredCircle(8, Color.BLUE);

 CC.shrink();

 }

}
Will the code compile without errors? Explain.

The shrink method is private in the Circle class (do you have the updated project?).
It can be used in the Circle object, but not the ColorCircle object.
Do you think making the shrink method a private method was a good choice? Explain.
No. Why not make public so the subclasses can use? Unless shrinking is not good for the ColorCircle.
Questions for Video - Inheritance Overriding Methods

In the InheritanceExamples project, take a look at the Shapes package.

Which methods would be considered overrided in the Parallelogram class?
getArea, getPerimeter, draw
In the InheritanceExamples project, take a look at the Bugs package.

Why might you override a method from your super class (a class you extend)?
You might want something different to happen in the subclass.
BoxBug is a good example. When it moves it moves differently.

In the StudentTeacher01 package, why did the programmer decide to make the ExchangeStudent override the getAverageMark method of the Student class?
because average marks are calculated differently (English is not included).

This coding task will be handed in as a file called RandomBug.java when you are done:

In the InheritanceExamples project, take a look at the Bugs package.

Read the entire task before you start!

Create a new class called RandomBug that extends the Bug class.

A random bug will pick a new direction every couple of steps.
*Don't worry if the bug wanders out the drawable area of the frame.

To accomplish this you will have to override the act() method of the Bug class in RandomBug.
The constructor for RandomBug can basically be a copy and paste of the constructor for the BoxBug (but call it RandomBug() !) class.

To test your Bug, go to the BugFrame class and find the lines of code where bugs are added to the simulation. Add in one of your RandomBugs and run the program to see if it works.
fun
Questions for Video - Inheritance Constructors and Super

In the InheritanceExamples project, take a look at the AnB package.
When writing the constructor for ClassB, you could just write the following without even using super(). Why not?
 public ClassB() {
 System.out.println(“Constructor ClassB”);

 }

If the super class constructor has no parameters, you don’t have to write super(). If you don’t, it is automatically called for you. It’s as if it is there.
When writing the constructor for ClassY, you MUST make a call using super. Why?

Class Y’s super class (Class X) has a constructor that has parameters. In this case you must call super and pass it some arguments.
Under what circumstances will a subclass have to use super in their constructor?

See above.
If you are going to use the word super in a constructor, what rule/s apply to it's use?

Must be the first line of the constructor.
Must provide the proper number of arguments to match one of the parent class’ constructors.
A student makes the following comment: “When instantiating an instance of ClassB with the line ClassB temp = new ClassB(); the constructor of ClassA will be called whether or not you include the line super() in the constructor of ClassB.”
Is this true or false? Explain.

Explained a question or two earlier. It’s true. The constructor of the parent class always runs.
In the InheritanceExamples project, take a look at the Bugs package.

You are asked to start writing a new class called TurnBug that will extend class Bug.
A TurnBug will turn right by a specific angle after a set number of steps.
Start the 'top part' of this class by filling in the following with code that would be appropriate.
public class TurnBug extends Bug {
 ? new fields ?
 public TurnBug(? constructor parameters ?) {
 ? constructor code ?
 }
 public void act() {

 age++;

 if (age==stepsBetween) {

 turn(turnAngle);
 age=0;

 }
}
The constructor should accept parameters that state the turn angle of the bug and a number that lets us know how many steps to wait between each turn. Of course the constructor should also accept any additional parameters to allow it to be compatable with the constructor of it's super class Bug. Replace the ? sections with your own code. You can code this in Netbeans to check if you get 'red lines' indicating problems with your implementation.
Code it and see if it works! If you have problems getting it working, show me the code and we’ll see what’s wrong.
Questions for Video - Inheritance Overrided Methods in Superclass

Consider the following classes and code:
	public class Ball {

 public int speed;
 public Ball() {

 speed=0;

 startRolling();

 }
 public void startRolling() {

 speed=5;

 }
 public void speedUp() {

 speed+=5;

 }
 public void goTurbo() {

 speedUp();
 speedUp();

 speedUp();

 }
}

	public class BigBall extends Ball {

 public BigBall() {

 super();

 }

 public void startRolling() {

 speed=1;

 }

 public void speedUp() {

 speed+=1;
 }

}

	In a runner program...

Line 1: Ball ball1 = new Ball();

Line 2: BigBall ball2 = new BigBall();

Line 3: ball2.goTurbo();

Below are a few questions regarding overridden methods in subclasses. Before you answer them, summarize the 'rule' regarding overrided methods that you will use to help you determine your answers.

If a subclass overrides a method and this method is called in the parent class constructor then the code for the new version is executed. It’s the code that is now in memory for that method name.
When line 1 finishes executing, what is the speed of ball1 ?

5
When line 2 finishes executing, what is the speed of ball2 ?

1
When line 3 is executed, will the goTurbo() method be using the code for speedUp() from the Ball class or the BigBall class?

Uses the new overrided method that increases by 1.

When line 3 finishes executing, what will be the speed of ball2 ?
1 + (1+1+1) = 4
